If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-2x-518=0
a = 1; b = -2; c = -518;
Δ = b2-4ac
Δ = -22-4·1·(-518)
Δ = 2076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2076}=\sqrt{4*519}=\sqrt{4}*\sqrt{519}=2\sqrt{519}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{519}}{2*1}=\frac{2-2\sqrt{519}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{519}}{2*1}=\frac{2+2\sqrt{519}}{2} $
| r+2r-r=16 | | 8=2*h*2 | | 8+6x+4=3(10+x) | | 1/5x+1x+9x=10 | | r—5.97/4=3.44 | | 11n+3n+4n-14n-3n=20 | | 12x^2-120x+900=0 | | 13x-80=90 | | 9y+-10y=15 | | S=144+128t-16t^2 | | r-5.97/4=3.44 | | 8=2h2 | | 2a+5a-4a-a=14 | | x²-2x-518=0 | | 18b-4b-12b+b-2b=17 | | 4=2*h*1 | | 18.67+11.5q=11.1q+13.83 | | 0m+8=7m+17 | | (x-4)/21=(6/7)-((x-7)/14) | | 8b+4b+b+4b-15b=8 | | |2x+15|=36 | | 6(f-86)=12 | | 3+4x+75=180 | | 4=-5/8+u | | 5n+2=57 | | x^2+7+4x-5=34 | | 11h+-9h=10 | | 8−8b=-10b | | z/5+60=68 | | c-c+c=9 | | 6(v+1)=54 | | 12w+2w-14w+w=19 |